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We consider briefly the analysis of survival data when one is willing to
assume a parametric form for the distribution of survival time.

1 Survival Distributions

1.1 Notation

Let T denote a continuous non-negative random variable representing sur-
vival time, with probability density function (pdf) f(¢) and cumulative dis-
tribution function (cdf) F'(t) = Pr{T < t}. We focus on the survival func-
tion S(t) = Pr{T > t}, the probability of being alive at ¢, and the hazard
function A(t) = f(t)/S(t). Let A(t) = Ji M(u)du denote the cumulative (or
integrated) hazard and recall that

S(t) = exp{—A(t)}.

Any distribution defined for t € [0,00) can serve as a survival distribution.
We can also draft into service distributions defined for y € (—o0,00) by
considering t = exp{y}, so that y = logt. More generally, we can start from
a r.v. W with a standard distribution in (—o0, 00) and generate a family of
survival distributions by introducing location and scale changes of the form

log' =Y =a+ ocW.
We now review some of the most important distributions.

1.2 Exponential

The exponential distribution has constant hazard A(t) = A. Thus, the sur-
vivor function is S(t) = exp{—At} and the density is f(t) = Aexp{—At}. It



can be shown that F(T) = 1/X and var(T) = 1/A\%. Thus, the coefficient of
variation is 1.

The exponential distribution is related to the extreme-value distribution.
Specifically, T' has an exponential distribution with parameter A, denoted
T ~ E(N), iff

Y=logT =a+W

where a = —log A and W has a standard extreme value (min) distribution,
with density
fw(w) =e""¢".
This is a unimodal density with E(W) = —v, where v = 0.5722 is Euler’s
constant, and var(W) = 72 /6. The skewness is -1.14.
The proof follows immediately from a change of variables.

1.3 Weibull

T is Weibull with parameters A and p, denoted T' ~ W (\, p), if TP ~ E(\).
The cumulative hazard is A(t) = (At)P, the survivor function is S(t) =
exp{—(At)P}, and the hazard is

A(t) = A\PptP~L,

The log of the Weibull hazard is a linear function of log time with constant
plog A + logp and slope p — 1. Thus, the hazard is rising if p > 1, constant
if p =1, and declining if p < 1.
The Weibull is also related to the extreme-value distribution: T ~
W (A, p) iff
Y =logT =a+ oW,
where W has the extreme value distribution, « = —log A and p = 1/0.

The proof follows again from a change of variables; start from W and
change variables to Y = a4+ oW, and then change to T = eY .

1.4 Gompertz-Makeham

The Gompertz distribution is characterized by the fact that the log of the
hazard is linear in ¢, so
A(t) = exp{a + [t}
and is thus closely related to the Weibull distribution where the log of the
hazard is linear in logt. In fact, the Gompertz is a log-Weibull distribution.
This distribution provides a remarkably close fit to adult mortality in
contemporary developed countries.



1.5 Gamma

The gamma distribution with parameters A and k, denoted T'(\, k), has
density
YN kflef)\t
piy = 2
I'(k)

and survivor function
S(t) =1 — Ix(At),

where Ii(z) is the incomplete gamma function, defined as

Ii(z) = /0 : Ne=Le=Zdy /T (k).

There is no closed-form expression for the survival function, but there are
excellent algorithms for its computation. (R has a function called pgamma
that computes the cdf and survivor function. This function calls k the shape
parameter and 1/A the scale parameter.)

There is no explicit formula for the hazard either, but this may be com-
puted easily as the ratio of the density to the survivor function, A(t) =
f(t)/S(t). The gamma hazard

e increases monotonically if £ > 1, from a value of 0 at the origin to a
maximum of A,

e is constant if k =1

e decreases monotonically if £ < 1, from oo at the origin to an asymp-
totic value of A.

If £ = 1 the gamma reduces to the exponential distribution, which can
be described as the waiting time to one hit in a Poisson process. If k£ is an
integer k > 1 then the gamma distribution is called the Erlang distribution
and can be characterized as the waiting time to k hits in a Poisson process.
The distribution exists for non-integer k as well.

The gamma distribution can also be characterized in terms of the dis-
tribution of log-time. By a simple change of variables one can show that
T ~T(\ k) iff

logT'=Y =a+ W,

where W has a generalized extreme-value distribution with density
e

fw(w): F(k) )

controlled by a parameter k. This density reduces to the ordinary extreme
value distribution when k£ = 1.

kw—e®”




1.6 Generalized Gamma

Stacy has proposed a generalized gamma distribution that fits neatly in
the scheme we are developing, as it simply adds a scale parameter in the
expression for log T, so that

Y =logT =a+ oW,

where W has a generalized extreme value distribution with parameter k.
The density of the generalized gamma distribution can be written as

Ap(At)PF—1e= (A"
I'(k) 7

ft) =
where p =1/0.
The generalized gamma includes the following interesting special cases:
e gamma, when p =1,
e Weibull, when k£ =1,
e exponential, when p =1 and k = 1.

It also includes the log-normal as a special limiting case when k — oc.

1.7 Log-Normal

T has a lognormal distribution iff
Y =logT =a+ oW,

where W has a standard normal distribution.

The hazard function of the log-normal distribution increases from 0 to
reach a maximum and then decreases monotonically, approaching 0 as t —
00.

As k — oo the generalized extreme value distribution approaches a stan-
dard normal, and thus the generalized gamma approaches a log-normal.

1.8 Log-Logistic
T has a log-logistic distribution iff

Y =logT =a+ oW,



where W has a standard logistic distribution, with pdf

oW
fw(w) = m>

and cdf o

Fy (w) = T ev
The survivor function is the complement

Sw(w) = | —{—16“"
Changing variables to T we find that the log-logistic survivor function is

1

S(t) = ma

where we have written, as usual, « = —log A and p = 1/0. Taking logs we

obtain the (negative) integrated hazard, and differentiating w.r.t. ¢ we find

the hazard function
B /\p(/\t)p’1

Alt) = .
® =717 (At)P
Note that the logit of the survival function S(t) is linear in logt. This fact
provides a diagnostic plot: if you have a non-parametric estimate of the
survivor function you can plot its logit against log-time; if the graph looks

like a straight line then the survivor function is log-logistic.
The hazard itself is

e monotone decreasing from oo if p < 1,
e monotone decreasing from X if p =1, and

e similar to the log-normal if p > 1.

1.9 Generalized F
Kalbfleisch and Prentice (1980) consider the more general case where
Y=logT =a+cW

and W is distributed as the log of an F-variate (which adds two more pa-
rameters).

The interesting thing about this distribution is that it includes all of the
above distributions as special or limiting cases, and is therefore useful for
testing different parametric forms.



1.10 The Coale-McNeil Model

The Coale-McNeil model of first marriage frequencies among women who
will eventually marry is closely related to the extreme value and gamma
distributions.

The model assumes that the density of first marriages at age a among
women who will eventually marry is given by

g(a) = go (a_kao) %

where ag and k are location and scale parameters and go(.) is a standard
schedule based on Swedish data. This standard schedule was first derived
empirically, but later Coale and McNeil showed that it could be closely
approximated by the following analytic expression:

o—0.288(2—6.06)

gO (Z) — 1.946670.174(276.06)7

It will be convenient to write a somewhat more general model with three
parameters:

) _ A —a(x—@)—e’)‘(zfe).

Y(a/7)
This is a form of extreme value distribution. In fact, if &« = A it reduces
to the standard extreme value distribution that we discussed before. This
more general case is known as a (reversed) generalized extreme value.

The mean of this distribution is

g(

1
p=0-— Xw(a/)\)a

where () = I"(x)/T'(x) is the digamma function (or derivative of the log
of the gamma function).
The Swedish standard derived by Coale and McNeil corresponds to the
case
a=0.174, A = 0.288, and 6 = 6.06,

which gives a mean of p = 11.36.
By a simple change of variables, it can be seen that the more general
case with parameters ag and k corresponds to

*



Thus, X has the (more general) Coale-McNeil distribution with parameters
a, X and 0 iff

1
XZG—XlOgY,

where Y has a gamma distribution with shape parameter p = a//\.

In other words, age at marriage is distributed as a linear function of the
logarithm of a gamma random variable.

In particular, the Swedish standard can be obtained as

X =6.06 — logy,

0.288

where Y is gamma with p = a/A = 0.174/0.288 = 0.604.
The case with parameters ay and k& can be obtained as

X =ag + 6.06k — log,

0.288
where Y is again gamma with p = 0.604.

The Coale-McNeil models holds the ratio p = o/ fixed at 0.604, but
along the way we have generalized the model and could entertain the notion
of estimating p rather than holding it fixed.

The main significance of these results is computational:

e we can calculate marriage schedules as long as we have a function to
compute the incomplete gamma function (or even chi-squared)

e we can fit nuptiality models using software for fitting gamma models.

For further details see my 1980 paper with Trussell. In that paper we
used the mean and standard deviation as the parameters of interest, instead
of ap and k. I have also written a set of R/S functions to compute marriage
schedules, and these are documented separately.

2 Models With Covariates

There are four approaches to modelling survival data with covariates:

e Parametric Families
e Accelerated Life
e Proportional Hazards

e Proportional Odds

We describe each in turn.



2.1 Parametric Families

A general approach is to pick one of the parametric distributions that we
have discussed and let the parameters of that distribution depend on covari-
ates. For example,

e In an exponential distribution we could let the parameter A depend on
a vector of covariates z, for example using a log-linear model where

log\ =2/

e In a Weibull distribution we could use a similar model for A\ while
holding p fixed, or we could let p depend on covariates as well, for
example as

logp = 2’y
e In the Coale-McNeil model using the Rodriguez-Trussell parametriza-
tion, one could use a linear model for the mean
p=2x'p

while holding the standard deviation o constant (as usually done in
linear models). Alternatively, we could let the dispersion depend on
covariates as well, using

logo = 2’7,

with parameters . In the most general case, we could let the propor-
tion that eventually marries depend on yet another set of parameters.

In general, with k£ groups one could give each group its own distribution in
a family. This is a workable approach, but it is not exactly parsimonious
and doesn’t lend itself to easy interpretations.

2.2 Accelerated Life Models
Consider an ordinary regression model for log survival time, of the form
Y =logT = —a'B+ oW,

where the error term W has a suitable distribution, e.g. extreme value, gen-
eralized extreme value, normal or logistic. This leads to Weibull, generalized
gamma, log-normal or log-logistic models for 7.



For example if W is extreme value then T has a Weibull distribution
with )
log\ = 2/ and p=—.
o

Note that A depends on the covariates but p is assumed the same for every-
one.

This model has an accelerated life interpretation. In this formulation we
view the error term oW as a standard or reference distribution that applies
when z = 0. It will be convenient to translate the reference distribution to
the time scale by defining Ty = exp{cW}. The probability that a reference
subject will be alive at time ¢, which will be denoted Sy(t), is

So(t) = Pr{Tp > t} = Pr{W > logt/o}.

Consider now the effect of the covariates x. In this model T is distributed
as Toe*“/ﬂ, so the covariates act multiplicatively on survival time. What is
the probability that a subject with covariate values x will be alive at time
t?

S(t,z) = Pr{T > t|lz} = Pr{Tpe " > t} = Pr{Ty > te*' P} = Sy(te”?).

In words, the probability that a subject with covariates x will be alive at
time t is the same as the probability that a reference subject will be alive at
time texp{2’8}. This may be interpreted as time passing more rapidly (or
people aging more quickly) by a factor exp{z’S}, for example twice as fast
or half as fast. (The analogy to 'dog years’ should no go unnoticed.)

We can also write the density and hazard functions for any subject in
terms of the baseline or reference density and hazard:

F(t) = folte”P)e?,

and
A(t) = Ao(te®P)e™' P,

We see that a simple relationship between the survivor functions for differ-
ent x’s (just a stretching of the time axis), translates into a more complex
relationship when viewed in terms of the pdf or the hazard function.
Consider for example a multiplier of two for a subject with covariates z.
In terms of survival, this means that the probability that the subject would
be alive at any given age is the same as the probability that a reference
subject would be alive at twice the age. In terms of risk, it means that our



subject is exposed at any given age to double the risk of a reference subject
twice as old.

Note also that if we start with a given distribution and stretch the time
axis we may well end up with a distribution in a completely different family.
Stretching a Weibull produces another Weibull, but not all families are closed
under acceleration of time. (Is the Coale-McNeil an accelerated life model?)

2.3 Proportional Hazards

An alternative approach to modelling survival data is to assume that the ef-
fect of the covariates is to increase or decrease the hazard by a proportionate
amount at all durations. Thus

Mt, @) = Ao(t)e® P,

where \o(t) is the baseline hazard, or the hazard for a reference individual
with covariate values 0, and exp{z’S} is the relative risk associated with
covariate values x.

Obviously the cumulative hazards would follow the same relationship,
as can be seen by integrating both sides of the previous equation. Expo-
nentiating minus the integrated hazard we find the survivor functions to
be )

S(t,z) = So(t)=" ",
so the survivor function for covariates x is the baseline survivor raised to
a power. If a subject is exposed to twice the risk of a reference subject at
every age, then the probability that the subject will be alive at any given
age is the square of the probability that the reference subject would be alive
at the same age. In this model a simple relationship in terms of hazards
translates into a more complex relationship in terms of survival functions.

These equations define a family of models. Picking a different parametric
form for the baseline hazard leads to a different model in the proportional
hazards family. Suppose we start with a Weibull baseline hazard, so

Xo(t) = Ap(At)P~H,

and we then multiply this by a relative risk e”P. You should be able to
show that the resulting hazard is again Weibull,

Aty ) = Np(A )P,

with the same p as before but \* = \e*'5/?,

10



Thus, the Weibull family is closed under proportionality of hazards, but
this is not true for other distributions. If T} is log-logistic, for example, and
we multiply the hazard by a relative risk e'?, the resulting distribution is
not log-logistic.

2.4 Proportional Hazards and Accelerated Life

Do the proportional hazard and accelerated life models ever coincide? More
precisely, if we start with a hazard and multiply by a relative risk, and
someone else starts with another hazard and stretches time, do we ever end
up with the same distribution? The condition just formulated may be stated
as

Xo()e™ P = X (te™ P )e® B

for all x and ¢. The stars indicate that we do not necessarily start with
the same baseline hazard or end up with the same parameters reflecting the
effects of the covariates.
If this condition is to be true for all x then it must be true for x = 0,
implying
No(t) = N (),

so the baseline hazards must be the same. Let us try to find this hazard.
The trick here is to consider a very special value of the vector of covariates
x, where we set the first element to —logt//57 and the others to zero, so

x = (—logt/p7,0,...,0).

Multiplying by 8* we find that 2’8* = — log ¢, while multiplying by /3 gives
'8 = —logtB1/P;. Using these results on the condition we obtain

)\O(t)eflogt&/ﬁf _ /\o(tefl()gt)e*bgt_

Using the fact that e?1°8¢ = ¢ we can simplify this expression to

) (1) = 2w

or, moving the term on 1/t to the right-hand side,
Xo(t) = Ao(1)tP1 /P11,

Repeat this exercise with a covariate vector x that has logt/5; in the i-th
slot and 0 everywhere else, so that 2/8* = —logt and 2/ = —logts;/0;.

11



We find the same result but with g;/5 — 1 as the exponent of ¢. If the
condition is to be true for all z, then the ratio of the coefficients must be
constant,

Bi B

F;:E:pv

say. This leads to the solution
Ao(t) = Ao (1),

which can be recognized as a Weibull hazard. To see this last point write
the result in the more familiar form

Xo(t) = APptP~t = Ap(At)P,

where T have taken the constant to be A\g(1) = Mp, which is the same as
defining A = (\g(1)/p)/P.

This result shows that the Weibull is the only distribution that is closed
under both the accelerated life and proportional hazards families.

Note that the accelerated life and proportional hazards parameters §*
and (8 are proportional to each other, with proportionality constant p. In
particular, they are equal for p = 1.

Thus, doubling the risk in an exponential model makes time go twice as
fast. But doubling the risk in a Weibull model with p = 2 makes time go
only about 40% faster. Can you see why?

2.5 Proportional Odds

An alternative approach to survival modelling is to assume that the effect of
the covariates is to increase or decrease the odds of dying by a given duration
by a proportionate amount:

1= S(t,2) _ 1= So(t) up
St,z)  So(t) ’

where Sy(t) is a baseline survivor function, taken from a suitable distribu-
tion, and exp{z/A} is a multiplier reflecting the proportionate increase in
the odds associated with covariate values .

Taking logs, we find that

logit(1 — S(t,z)) = logit(1 — So(t)) + 2’3,

so the covariate effects are linear in the logit scale.

12



A somewhat more general version of the proportional odds model (but
without covariates) is known as the relational logit model in demography.
The idea is to allow the log-odds of dying in a given population to be a
linear function of the log-odds in a reference or baseline population, so that

logit(1 — S(t)) = a + flogit(1 — Sy(t)).

These models were popularized by Brass. The proportional odds model is
the special case where § = 1 (but we let the constant o depend on covari-
ates).

These models could be defined in terms of the odds of surviving to du-
ration ¢, but this merely changes the sign of 5. I prefer the definition in
terms of the odds of dying because it preserves the interpretation of the £
coefficients as increasing the risk, which is consistent with hazard models.
This is also the reason why I used a minus sign when defining the coefficients
for accelerated life models.

As an example consider a proportional odds model with a log-logistic
baseline. The corresponding survival function, its complement, and the
odds of dying are

1 (At)P 1 — Sp(t)

14 (AP’ L= 5(t) = 1+ (AP’ So(t) (At)"
Multiplying the odds by exp{z/S} yields another log-logistic model, this
time with A* = Ae*’#/P and p* = p. Thus, the log-logistic family is closed
under proportionality of odds.

This is not true of other distributions. For example if we start with a
Weibull baseline and multiply the odds of dying by a constant, the resulting
distribution is not Weibull.

So(t)

2.6 Proportional Odds And Accelerated Life

Do the proportional odds and accelerated life models ever coincide? The
answer is yes, when (and only when) the baseline is log-logistic.

The proof follows essentially the same steps as the proof for the inter-
section of the proportional hazards and accelerated life models.

3 Maximum Likelihood Estimation

All parametric models may be fit by maximizing the appropriate likelihood
function.
The data consist of pairs {t;,d;} where
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e {; is the survival or censoring time, and

e d; is a death indicator, taking the value 1 for deaths and 0 for censored
cases

The likelihood function under general non-informative censoring has the

form
n

L(Q) = H )\(tz‘l'z)d"“S(tZ’(I}Z),
i=1
and in general must be maximized numerically using a procedure such as
Newton-Raphson.

Kalbfleisch and Prentice have a nice discussion of the procedures that
need to be followed in fitting parametric models, including first and second
derivatives for accelerated life models using the parametric distributions
discussed here.

Stata’s streg can fit a number of parametric models, including expo-
nential, Weibull and Gompertz in the proportional hazards framework, and
log-normal, log-logistic, and generalized gamma (as well as exponential and
Weibull) in the accelerated failure-time framework. Now you know why the
Weibull is included in both the PH and AFT metrics.
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